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Abstract---Numerical studies of three-dimensional flows in a cubical container with a stable vertical 
temperature stratification are carried out. Flows are driven by the top lid, which slides in its own plane at 
a constant speed. The top wall is maintained at a higher temperature than the bottom wall. The end walls 
and the side walls are thermally insulated. Numerical solutions are obtained over a wide range of physical 
parameters, i.e. 10 2 ~< Re ~< 2 x 103, 0 ~< Ri <~ 10.0 and Pr = 0.71, where the mixed-convection parameter 
Ri - Gr" J~e -z. Systematical comparison of the three-dimensional numerical solutions with the previously 
reported two-dimensional results illuminates the impact of thermal stratification on the three-dimensional 
flow characteristics. When Ri << O(1), the effect of the vertical temperature gradient is minor, and the flow 
structures are similar to those of the non-stratified fluid flows in a conventional lid-driven cavity flow. 
Fluids in the primary vortex are well mixed, and the temperature is fairly uniform in the main circulating 
region. When Ri >~ O(1), the stable temperature distribution tends to suppress the vertical fluid motion. 
Much of the fluid motion takes place in the vicinity of the top sliding lid and the bulk of the cavity region 
is nearly stagnant. When Ri >> O(1), the fluid motion exhibits vertically layered vortex structures. The 
Nusselt number is computed at the top and bottom wall, and this also illustrates the varying flow 
characteristics as Ri encompasses a broad range. Extensive numerical flow visualizations are conducted. 
Plots demonstrating the primary flows in the (x-y) plane and the secondary flows in the (y-z) plane are 
presented. These display the influences of Re and Ri on the basic character of the flow and the three- 

dimensional effects. 

1. INTRODUCTION 

Flows of  a viscous fluid in a closed enclosure, driven 
by a boundary wall sliding at constant speed U0 in its 
own plane, cons~Litute a classical model problem. In 
its simplest form, the two-dimensional problem in a 
square cavity of  height h is often referred to as the 
standard driven-cavity flows. The flow is characterized 
by the Reynolds number, Re = Uoh/v, where v denotes 
kinematic viscosity of  the fluid. This problem offers 
an attractive testing ground to validate numerical 
solution algorithms [1]. The boundary conditions are 
straightforward, and various numerical solutions are 
cross-checked tc assess the capabilities of  newly- 
developed numerical methodologies. On the exper- 
imental front, flaw visualization and measurement 
techniques are introduced and put to work on this 
benchmark problem formulation [2-9]. 

The majority of  past numerical efforts on driven- 
cavity flows haw, • been confined to two-dimensional 
configurations. Due to the recent innovations in com- 
puting technologies, several serious endeavors have 
been reported in the literature to tackle realistic three- 
dimensional cavity flows. Among  others, Freitas et al. 

[10, 11] computed flow in a rectangular cavity of  
depth-to-spanwise aspect ratio 3.0 at Re = 3200. The 
existence of  meridional vortices was documented and 
considerable flow unsteadiness was noted. Prasad et 

al. [6], in a calculation similar to that of  Freitas et al., 

varied the spanwise aspect ratio between 0.25 and 1.0. 
The findings were shown to be qualitatively consistent 
with the experimental observations by Koseff and 
Street [2-4]. Ku  et al. [12] calculated flows in a cubic 
cavity at Re = 1000 and 100,400. Perng and Street 
[13] computed flow at a higher Re,  i.e. Re  = 3200. A 
systematic computational  exercise was performed by 
Iwatsu et al. [14, 15] for a cubic cavity for 
100 ~< Re <<. 4000. These numerical programs illus- 
trated the prominent  flow characteristics as Re encom- 
passed a wide range, and the emergence of  three- 
dimensional Taylor-G6rt ler- l ike vortices was dis- 
cernible. The results of  three-dimensional flow com- 
putations were shown to be in broad qualitative agree- 
ment with the published experimental data. These 
positive comparisons give credence to the accuracy 
and robustness of  numerical approaches in dealing 
with three-dimensional driven-cavity flows. 
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NOMENCLATURE 

g gravity acceleration 
Gr Grashof number, c~gATh3/v 2 
h cavity height 
57u average Nusselt number [equation (4)] 
p nondimensional pressure 
Pr Prandtl number, v/x 
Re Reynolds number, Uoh/v 
Ri  Richardson number, Gr" Re-2 
t nondimensional time 
T nondimensional temperature, 

(Tdi m -- T , ) / A T  
TB bottom wall temperature 
TT top wall temperature 

AT temperature difference, 
TT-- TB(AT > O) 

Uo top wall velocity 
V nondimensional velocity vector, 

(u, v, w) 
x, y, z coordinate (see Fig. 1). 

Greek symbols 
a coefficient of thermometric expansion 
~c thermal conductivity 
v kinematic viscosity 
p density. 

We shall now consider driven-cavity flows when a 
vertical temperature difference is applied at the hori- 
zontal surface walls of the container. This implies that 
an additional element, buoyancy, is brought into the 
overall dynamics. The impact of buoyancy on general 
flow patterns in a driven-cavity was studied by numeri- 
cal [16-18] and experimental investigations [19]. In 
particular, the work of Mohamad and Vistanka [18] 
considered the flows in a shallow two-dimensional 
rectangular cavity when a gravitationally destabilizing 
vertical temperature difference, i.e. bottom-heated 
and top-cooled, was enforced. The numerical studies 
of Iwatsu et al. [16, 17] addressed the issues of flow 
and heat transport in a two-dimensional cavity when a 
stabilizing vertical temperature difference, i.e. bottom- 
cooled and top-heated, was applied. The purpose was 
to inquire as to the possibility of heat transfer aug- 
mentation by enhancing convective activities in an 
otherwise conduction-controlled enclosed container. 
The above studies clearly illustrated complex inter- 
plays between mechanically caused convection and 
gravitational buoyancy effects. Iwatsu et al. [16, 17] 
documented the changes in global heat transports as 
the mixed-convection parameter Ri[ = - Gr 'Re-2] ,  
where Gr is the system Grashof number, covered a 
broad range. 

In the present paper, efforts are undertaken to 
extend the previous work of lwatsu et al. [16, 17] to a 
three-dimensional cavity. The objective is to move the 
above analyses closer to realism. The mission is to seek 
full numerical solutions to three-dimensional driven- 
cavity flow and heat transfer characteristics over 
ranges of principal nondimensional parameters. As 
stressed earlier, since the externally-applied tem- 
perature difference is gravitationally stable, the ver- 
tical heat transfer would be entirely conductive in the 
absence of the top lid motion. By forcing the lid to 
slide, mechanically driven convection is induced, and 
the associated heat transports are enhanced. In 
realistic applications, however, three-dimensional 
constraints have to be taken into consideration, and 
the present paper aims to disclose three-dimensional 

features in a cubic cavity. Of particular interest will be 
the depiction of three-dimensionalities in the relevant 
parameter spaces. These will also help identify the 
limitations of two-dimensional computational results. 
A series of numerically-constructed plots, exhibiting 
the primary flows on the (x-y) plane and the mer- 
idional flows on the (y-z)  plane, will be presented. 
These will point to the influences of mechanically- 
and thermally-driven convections on the main and 
transverse flows. Perspective views are made to por- 
tray the three-dimensional temperature fields and heat 
transfer at the walls. 

2. NUMERICAL MODEL 

Consider a viscous, incompressible fluid of density 
p and thermal diffusibity x, filled in a cubic cavity, 
sketched in Fig. 1. The top lid, y = h, executes a steady 
sliding motion in its own plane at constant velocity 
U0, and the other boundary walls are at rest. The top 
and bottom lids are thermal conductors with pre- 
scribed temperatures, Tr and Ts, with AT=-- 
T r - T B  > 0, respectively. The other boundary sur- 
faces are thermally insulated. The task is to describe 
the fluid flow and heat transfer in the cavity. 

U = I  

h 
O T =  0 

° - Z = O  / z  o,~ h 

! 

0 h z 

Fig. I. Boundary condition and flow configuration. 
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The governing, three-dimensional Navier-Stokes 
equations are written, in nondimensionalized form, 
a s  : 

divV = 0 (1) 

0V 
~- + (V. grad)V = - gradp + Re 1AV + Ri Te 

(2) 

3T 
~- + (V" grad) T = (Re" Pr) -  ~AT (3) 

in which, V = (u, v, w) is the velocity, p the pressure, 
T the temperature, e = (0, 1, 0) the unit vector in the 
vertical direction. The reference scales for non- 
dimensionalization are h, Uo, h/Uo and pU 2 for 
length, velocity, time and pressure, respectively. The 
nondimensional temperature T is defined as 
(Tdim--TB)/AT. The relevant nondimensional par- 
ameters are the Reynolds number Re =- Uoh/v; the 
Grashof number Gr =- ~tgATh3/v z, in which ~ denotes 
the coefficient of' thermometric expansion of the fluid, 
and g gravity; Prandtl number Pr = v/K; and the 
mixed-convection parameter Ri =- Gr. Re 2. 

The boundary conditions are 

V = ( 1 , 0 , 0 )  at y =  1 

V = 0  at y = 0 ,  x = 0 , 1  and z = 0 , 1  

T =  0 at y = 0  

T = I  at y = l .  

~T 
- 0  at x = 0 , 1  and z = 0 , 1  

0n 

where n denotes the normal direction to the surface. 
The initial conditions are such that the fluid is 

motionless and 1:he vertically linear temperature pro- 
file is prescribed. 

The above sy:~tem of equations is solved by using 
the MAC (Marker and Cell) method. The Poisson 
equation, which is derived by taking the divergence 
of the momentum equations, is solved iteratively by 
utilizing the SOR (Successive Over-Relaxation) tech- 
nique. The pressure field is introduced into the 
momentum equations to calculate the velocity field at 
the next time level. An explicit time-stepping is used 
in the momentum and energy equations. 

The accuracy of discretizations is second-order in 
space and first-order in time. The grid points are clus- 
tered near the :solid boundary walls by employing 
hyperbolic tangent functions. The details of numerical 
procedures were given in previous accounts [e.g. 14, 
17]. 

For the present three-dimensional calculations, the 
number of grid points was typically (81 × 81 × 81). 
The time interwtl At was set 0.002 when Ri ~< 1 and 
0.001 when Ri > 1. Extensive sample runs were per- 
formed to ascertain the grid- and time-step con- 
vergences of the', numerical output. The outcome of 
these elaborate sensitivity tests was highly positive, 

which established the reliability and accuracy of the 
present numerical methodologies. The CPU time was 
10-20 h per run on an NEC SX3/21 supercomputer 
(maximum speed 1.6 x 2 GFLOPS, main memory 
256M bytes). 

3. RESULTS AND DISCUSSION 

The present results indicate that solutions are not 
steady when Re exceeds approximately 2000. The 
principal aim here is to address the character of flow 
when steady, converged solutions are secured and, for 
this reason, discussions will be concentrated on steady 
flows for three sets of Re = 100,400 and 1000. The 
Prandtl number is set at Pr = 0.71. The values of Gr 
are chosen such that the mixed-convection parameter 
Ri takes 0.001, 1.0 and 10. These three cases signify 
respectively the situations in which the buoyancy- 
driven stabilizing effect is vanishingly small, com- 
parable to, and dominant compared to the influence 
of mechanically driven forced convection. 

The objective is to illuminate the effects of the mech- 
anically driven lid motion and of the thermally driven 
buoyancy on the global three-dimensional flow field. 
The numerical results are post-processed to exhibit: 
(A) the primary flows (u, v) on the (x-y) plane at 
z = 0.5, and (B) the meridional flow (v,w) on the 
(y-z) plane at x = 0.5. 

Figure 2 shows the flow, computed at Re = 400, 
which illustrates the influence of Ri. Frames (A) por- 
tray the (u-v) velocity projections on the plane of 
z = const., and frames (B) the (v-w) velocity pro- 
jections on the plane of x = const. Since steady-state 
flows are considered, the path lines and the stream- 
lines are identical. Three-dimensional perspective 
views, which may be obtained by combining frames 
(A) and (B), do not yield clear pictures, and Fig. 2 
displays separate frames of (A) and (B). When the 
buoyancy effect is very small (see Fig. 2a), frame (A) 
depicts the well-documented (u, v)-velocity pattern of 
the benchmark solution. The main clockwise cir- 
culation cell fills much of the cavity interior, and a 
weak counter-clockwise cell is seen at the lower-right 
corner. This is typical of the primary flow in a mech- 
anically-driven cavity of a non-stratified fluid when 
Re is reasonably high. The associated meridional 
(v, w)-flow has also been studied extensively. The pic- 
tures shown in Fig. 2a reproduce much of the eminent 
features of conventional driven-cavity flows. 

As the strength of stable stratification increases, the 
major part of the primary clockwise circulation cell 
tends to be located in the upper region of the cavity 
closer to the top surface (see Fig. 2b). The stable 
stratification suppresses vertical motions, and, there- 
fore, the impact of the sliding top wall penetrates to 
smaller distance into the fluid. As seen in Fig. 2(c), 
when Ri is large, the flow in the middle and lower 
portions of the cavity interior is meager. The weak- 
ening of vertical motions with the increase of Ri is 
also apparent in the meridional flows. Also, as stable 
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stratification increases (see Fig. 2c), the principal part 
of meridional flows tends to be located to the upper 
region closer to the sliding wall. The illustrations in 
Fig. 2 serve to identify the major qualitative changes 
in the global flow patterns as Ri encompasses a wide 
range. 

Figure 3 exhibits the overall flow characteristics as 
Re varies. Several attempts have been made to pro- 
duce well-balanced three-dimensional descriptions. In 
Fig. 3, coordinates and scales have been adjusted to 
select suitable viewing angles of the cavity flow. 
Frames (A) illustrate the cases of a non-stratified fluid 
(Ri=0.001).  The intensification of three-dimen- 
sionalities, which are represented by distinct mer- 
idional flows and by the dependence of the flow on 
the z-coordinate, is discernible as Re increases. These 
aspects were elucidated in preceding reports regarding 
flows of a homogeneous fluid in a cubic driven-cavity 
[14, 15]. Frames (B) show the flows under substantial 
influence of stable buoyancy (Ri = 10.0). The sup- 
pression of vertical velocities, especially in the middle 
and bottom portions of the cavity, is notable, and 
this trend is more pronounced as Re increases. As 
manifested in frame (B) of Fig. 3(c), when Ri >~ 1 and 
Re is large, the ltuid in the bulk of the cavity interior 
is nearly stagnant, except in a narrow region adjacent 
to the sliding top wall. The flows are mostly in the x- 
direction and they are localized to the top portion of 
the cavity interior. Extremely weak secondary flows 
are seen. In addition, in much of the interior, the 
dependence of the flow on the z-coordinate is minimal, 
pointing to the prevailing two-dimensionality. The 
meridional velocities when Ri >~ 1 and Re large are 
generally very small in the entire flow domain. The 
purpose of the work at this stage is to portray the 
global flow patterns in a realistic cavity. More precise 
descriptions of the three-dimensional flow details in 
the parameter space of Re and Ri are beyond the scope 
of the present endeavor. 

The qualitative features of the thermal field are 
demonstrated by plotting the perspective views, as 
shown in Fig. 4. Frames (A) illustrate the iso-surfaces 
of temperature when Ri is negligibly small, indicating 
that the mechanically driven convection dominates 
the buoyancy-driven convection. When Re is reason- 
ably small (see Fig. 4a for Re = 100), the iso-surfaces 
of temperature display a fair degree of two-dimen- 
sionality. As can be inferred by frame (A), tem- 
perature gradients are very small in a large interior 
portion surrounding the upper-right corner of the 
cavity. This is indicative of the existence of a region 
of intense mechanically driven convective activity, in 
which fluids are well mixed. When Ri is large, the 
stabilizing influence of buoyancy is dominant, and 
heat transfer is controlled mostly by conduction. 
Frame (B) of Fig. 4a is consistent with this assertion. 
Three-dimensionalities are very weak when Ri is large. 

The thermal field characteristics at higher values of 
Re are described in Fig. 4b and c. When Ri is very 
small and Re large [see frame (A) of Fig. 4c], three- 

dimensionalities of the thermal field are pronounced. 
The vertical temperature gradients are confined 
mostly to the boundary layer regions near the top and 
bottom horizontal walls. In the bulk of the interior, 
fluids are well mixed by virture of intensified mech- 
anically driven convection. 

However, in the opposite limit, when Ri is large, the 
convective activities are inhibited by stable strati- 
fication. The heat transport is predominantly conduc- 
tive, and this trend becomes more pronounced as Re 

increases. The temperature field is strongly two- 
dimensional and isothermal surfaces are nearly hori- 
zontal, as exemplified in frame (B) of Fig. 4c. 

Based on the temperature field data, the local Nus- 
selt number Nu distributions on the top heated wall 
and bottom cooled wall are plotted in Fig. 5. When 
Ri is large[see frames (B) of Fig. 5], the Nu-values at 
the bottom wall are close to unity. This reflects the fact 
that, in the lower region of the cavity, fluid motions are 
suppressed and heat transfer is dominated by conduc- 
tion. On the upper portion of the cavity, weak fluid 
motions are seen. Generally, the Nu-values are small, 
and the Nu-distributions are mostly two-dimensional 
in the left portion of the top wall. Slight three-dimen- 
sional features in Nu are seen in the right portion of 
the top right wall. These trends are more pronounced 
as Re increases. On the other hand, when Ri is very 
small, frames (A) of Fig. 5 illustrate the substantial 
impacts of forced convection. Especially when Re is 
large, the Nu-distributions at the walls exhibit com- 
plex behavior, both in the z-direction as well as in the 
x-direction. The Nu-values at the top wall are very 
large at the top-left corner of the container, and Nu 

tends to decrease as x increases. On the bottom wall, 
due to the presence of vigorous convective activities 
in the entire cavity, the Nu values peak in the middle 
portion. At both the top and bottom wall, three- 
dimensional variations in Nu are notable as Re 

increases. 
In engineering applications, the overall effectiveness 

of heat transfer between two horizontal walls is of 
relevance. For this purpose, the average Nusselt num- 
ber ATu is defined : 

1 (?T 
,4, 

Table 1 lists the ~Tu values at the top wall for the 
computations rendered. Obviously, if the top wall is 
stationary, the only heat transfer mode will be con- 
duction, and ]Vu = 1.0. The convective activities 
which are induced by the moving wall clearly enhance 

Table 1. The average Nusselt number ~Tu at the top wall 

Re Ri = 0.001 Ri = 1.0 Ri = 10.0 

102 1.82 1.33 1.08 
4 × 102 3.99 1.50 1.17 
103 7.03 1.80 1.37 
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Fig. 4. Effects of Re on thermal fields. The contour values of isotherms are, from bottom to top, 0.0 (dark 
blue), 0.2 (light blue), 0.4 (green), 0.6 (yellow), 0.8 (bright red), 1.0 (dark red). Frames (A) are for 

Ri = 0.001, and frames (B) for Ri = 10.0. (a) Re = 100; (b) Re = 400; (c) Re = 1000. 



3326 R. IWATSU and J. M. HYUN 

6 
Nu  

( A )  
x = l  

16 

Nu  

8 

( A )  
x = l  

Nil 

4 

0 

(a) ( B )  
x - -1  

Nu 

4 

0 

(b) ( B )  
x = l  

24 

Nu  

12 

( A )  

= 1  

x = l  

6 

N u  

0 

(c) ( B )  
x = l  

Fig. 5. The N u  distributions on the top heated wall (shown in red) and on the bottom cooled wall (blue). 
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Fig. 6. Exemplary plots of the secondary flow profiles. (A) 
(v-x) plots at y = 0.5, z = 0.5. Re = 400, Pr = 0.71. ( ) 
Ri = 0.001 ; (...) Ri = 1.0; (-) Ri = 10.0. (B) (w-y) plots at 
x = 0.5, z = 0.5. Re = 400, Pr = 0.71. ( ) Ri = 0.001 ; 

(...) Ri = 1.0; (-) Ri = 10.0. 

the overall  heat  transfer.  The augmenta t ion  of  heat  
t ransfer  becomes more  effective as Re increases and  
Ri decreases. /~[any of  the computa t iona l  results 
shown here are indicative of  the quali tat ive effects of  
Re and  Ri on  the overall  flow. Quant i ta t ive  com- 
par isons  of  the convect ive and  buoyancy  effects are 
also informative.  As an  example, Fig. 6 gives exemp- 
lary plots of  secondary velocity profiles, which allow 
more  detailed cross-comparisons  of  these two effects. 

4. C O N C L U S I O N  

Comprehens ive  numerical  computa t iona l  results 
have been acquired for three-dimensional  flows in a 
cubical cavity. Numer ica l  flow visualizations dem- 
onst ra te  the expl!Lcit effects of  Ri as well as Re. 

W h e n  Ri is very small, the gross flow characterist ics 
are akin to the convent ional  driven-cavity flows, as 
addressed by earlier studies by Iwatsu et al. [14, 15]. 
W h e n  Ri is appreciable,  b o t h  the pr imary  and  mer-  
idional  flows are confined to the upper  region of  the 
cavity. In much  of  the middle and  lower por t ion  of  
the cavity, fluids tend to be s tagnant  and  heat  t ransfer  
is most ly conductive. Three-dimensional  features, as 
represented by meridional  flows, are intensified as Re 

increases. 
W h e n  Ri is small at  low values of  Re, the isotherm 

surfaces ma in ta in  a fair degree of  two-dimensionali ty.  
When  Ri is small and  Re large, the thermal  field shows 
stronger  three-dimensionali t ies.  On the o ther  hand ,  
stabilizing buoyancy  effects become d o m i n a n t  at  large 
Ri. In this case, heat  t ransfer  is largely convective and  
three-dimensional i ty  in the thermal  field is weak. 

The influence of  Ri is also apparen t  in the plots of  
Nu at the walls. W h e n  Ri is large, overall  heat  t rans-  
por t  is suppressed, and  the conduct ive heat  t ransfer  
mode  prevails. W h e n  Ri is very small, and  especially 
when  Re is large, complex three-dimensional  features 
are discernible in the Nu-fields. The global heat  t rans-  
fer is enhanced by vigorous forced convection.  
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